DIAGNOSTIC CRITERIA FOR THE RISK OF CYBERSICKNESS IN VIRTUAL REALITY

Authors

DOI:

https://doi.org/10.32782/3041-2005/2025-4.1

Keywords:

cybersickness, virtual reality, VR, psychological risk criteria, cognitive load, anxiety, perceptual flexibility

Abstract

The article conceptualizes cybersickness as a multilevel psychobehavioral phenomenon and proposes psychological risk criteria for preventive screening prior to VR interventions. The relevance stems from the expansion of VR in clinical and educational practice and increasing adverse effects that reduce treatment acceptability. The study shifts the focus from sensorimotor explanations to psychological vulnerability factors that determine the tolerance threshold to sensory conflict and load. The aim is to theoretically substantiate and systematize risk criteria on the basis of a review integrating data from psychometric questionnaires, behavioral tasks, eye-tracking and neurophysiological indicators. Four integrative blocks are distinguished: emotional-regulatory (anxiety sensitivity, emotional lability, trained self-regulation), cognitive-perceptual (cognitive load, working memory and attention resources, perceptual flexibility), personality-typological (neuroticism and external locus of control versus emotional stability and resilience) and motivational-adaptational (positive expectations, intrinsic motivation, biofeedback-supported self-regulation that reduce subjective load in VR scenarios). The result is a consolidated table of criteria specifying feature category, brief description, recommended assessment instrument and empirical grounding, which enables a transition from reactive responses to preventive risk stratification at the stage of session planning and personalization of VR scenarios. The proposed conceptualization outlines the psychological component of cybersickness as suitable for quantitative assessment and standardization, supporting safer evidence-based use of VR in psychological care, education and human-computer interaction.

References

Augereau O., Brocheton G., Neto P. An Open Platform for Research about Cognitive Load in Virtual Reality. IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW). 2022. Р. 54–55. https://doi.org/10.1109/vrw55335.2022.00020

Berger L., Wood G., Kober S. User Experience in Neurofeedback Applications Using AR as Feedback Modality. Comput. 2024. Vol. 13. Р. 110. https://doi.org/10.3390/computers13050110.

Breves P., Stein J. Cognitive load in immersive media settings: the role of spatial presence and cybersickness. Virtual Reality. 2022. Vol. 27. Р. 1077–1089. https://doi.org/10.1007/s10055-022-00697-5

A preventive school-based paradigm using virtual reality technologies for improving emotional regulation, depressive and anxiety symptoms in children and adolescents (e-Emotio project): a randomized controlled pilot trial / Carballo-Marquez A., Garcia- Casanovas A., Ampatzoglou A., Rojas-Rincón J., Fernández-Capo M., Gamiz-Sanfeliu M., Garolera-Freixa M., Porras-Garcia B. Мedrxiv. 2024. Р. 1–27. https://doi.org/10.1101/2024.04.17.24305984

Caserman P., Da Brandt Costa S., Martinussen M., Göbel S. The Influence of Personalized Music on Sense of Presence, Motivation, and Player Experience in Virtual Reality. Joint International Conference on Serious Games. 2023. Р. 194–210. https://doi.org/10.1007/978-3-031-44751-8_14

Chao N., Huang W. A construction method of biofeedback training system based on virtual reality technology. International Conference on Graphics and Image Processing. 2023. Vol. 14. Р. 1–7. https://doi.org/10.1117/12.2680122

Chung W., Barnett-Cowan M. Sensory reweighting: a common mechanism for subjective visual vertical and cybersickness susceptibility. Virtual Reality. 2022. Р. 1–13. https://doi.org/10.1007/s10055-023-00786-z

Daşdemir Y. Classification of Emotional and Immersive Outcomes in the Context of Virtual Reality Scene Interactions. Diagnostics. 2023. Vol. 13. Р. 34–37. https://doi.org/10.3390/diagnostics13223437

Dynamic Cognitive Load Assessment in Virtual Reality / Elkin R., Beaubien J., Damaghi N., Chang T., Kessler D. Simulation & Gaming. 2024. Vol. 55. Р. 755–775. https://doi.org/10.1177/10468781241248821

Englebert B., Tillema G., Foorthuis L. Rest-Frame Cueing for Cybersickness Mitigation in Virtual Reality Helicopter Flight Simulation. Human Factors and Simulation. 2024. Vol. 139. Р. 16–25. https://doi.org/10.54941/ahfe1005020

Fernandez R., Magallanes C. Locus of control, personality temperaments, and coping strategies of marine transportation students. Technium Social Sciences Journal. 2022. Vol. 32. Р. 467–480. https://doi.org/10.47577/tssj.v32i1.6616

The Effects of Virtual Reality in Targeting Transdiagnostic Factors for Mental Health: A Systematic Review of the Literature / Gardini V., Gamberini G., Müller S., Grandi S., Tomba E. Journal of Clinical Medicine. 2022. Vol. 11. Р. 63–64. https://doi.org/10.3390/jcm11216463

Exploring Relations Between Unique Patient Characteristics and Virtual Reality Immersion Level on Anxiety and Pain in Patients Undergoing Venipuncture: Secondary Analysis of a Randomized Control Trial / Gold J., Akbar K., Avila S., Ngo N., Klein M. Journal of Medical Internet Research. 2023. Vol. 26. Р. 1–11. https://doi.org/10.2196/53196

Guillen-Sanz H., Bayona Q., Pérez G. Design and Development of an Immersive Virtual Reality Serious Game With Biofeedback for Physiological Regulation: Alice, Beyond Reality. European Conference on Games Based Learning. 2024. Vol. 18. Р. 1–8. https:// doi.org/10.34190/ecgbl.18.1.2821

Hidzer M., Yatim M. Utilizing Hedonic-Motivation System Acceptance Model (HMASM) in Developing a Keris Virtual Reality Game. The International journal of Multimedia & Its Applications. 2024. Vol. 16. Р. 15–28. https://doi.org/10.5121/ijma.2024.16302

Kaaria A., Samba S. Locus of Control and the Role of Leadership on Employee Personality in Pharmaceutical Industry in Kenya. East African Journal of Interdisciplinary Studies. 2024. Vol. 7. Р. 119–138. https://doi.org/10.37284/eajis.7.1.1962

Technology Anxiety in Virtual Reality Adoption: Examining the Impact of Age, Past Experience, and Cybersickness / Khalifah, E., Hammady, R., Abdelrahman, M., Al-Shamaileh, O., Marghany, M., El-Jarn, H., Darwish A., Kurt Y. IEEE Access. 2025. Vol. 13. Р. 71858–71879. https://doi.org/10.1109/access.2025.3562383

Exploring the brain physiological activity and quantified assessment of VR cybersickness using EEG signals / Liu M., Yang B., Zan P., Chen L., Wang B., Xia X. Displays. 2024. Vol. 85. Р. 1–10. https://doi.org/10.1016/j.displa.2024.102879

Loñez H., Errabo D. Students’ Self-Motivation, Self-Efficacy, Self-Regulation in Virtual Laboratory in Human Anatomy Subject. Proceedings of the 2022 13th International Conference on E-Education, E-Business, E-Management, and E-Learning. 2022. Vol. 13. Р. 30–34. https://doi.org/10.1145/3514262.3514312

Effectiveness of Virtual Reality in the Management of Anxiety and Pain Peri-Treatment for Breast Cancer: A Systematic Review and Meta-Analysis / Lu M., Song Y., Niu Y., Liu T., Ge S., Sun Y., Wang X., Luo Y., Li K., Yang X. Journal of Nursing Research. 2024. Vol. 32. Р. 1–12. https://doi.org/10.1097/jnr.0000000000000623

Machakos T., Boyd L., Oh U., Vineyard J. Self-directed learning in dental hygiene students: Impact of locus of control and personality traits. Journal of dental education. 2024. Vol. 88. Р. 1320–1329. https://doi.org/10.1002/jdd.13575

Moinnereau M., Benesch D., Krätzig G., Paré S., Falk T. A Survey on the Relationship between Stress, Cognitive Load, and Movement on Cybersickness. Human Factors in Virtual Environments and Game Design. 2024. Vol. 137. Р. 95–106. https://doi.org/ 10.54941/ahfe1004991

Electroencephalogram microstates and functional connectivity of cybersickness / Nam S., Jang K., Kwon M., Lim H., Jeong J. Frontiers in Human Neuroscience. 2022. Vol. 16. Р. 1–12. https://doi.org/10.3389/fnhum.2022.857768

Exploring Eye Tracking to Detect Cognitive Load in Complex Virtual Reality Training / Nasri M., Kosa M., Chukoskie L., Moghaddam M., Harteveld C. IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct). 2024. Р. 51–54. https://doi.org/10.1109/ismar-adjunct64951.2024.00022

Testing the ‘differences in virtual and physical head pose’ and ‘subjective vertical conflict’ accounts of cybersickness / Palmisano S., Stephenson L., Davies R., Kim J., Allison R. Virtual Reality. 2024. Vol. 28. Р. 1–28. https://doi.org/10.1007/s10055-023-00909-6

Rettinger M., Jiang X., Yang J., Rigoll G. Visual Complexity in VR: Implications for Cognitive Load. IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW). 2024. Р. 783–784. https://doi.org/10.1109/vrw62533.2024.00188

Does Fantastic Reality Ability Differ Across Personality Prototypes? / Rubinstein D., Lahad M., Aharonson-Daniel L., Mizrahi D., O’Rourke N. Imagination, Cognition and Personality. 2024. Vol. 43. Р. 293–311. https://doi.org/10.1177/02762366241249467

Seiler R., Brodmann T., Keller T. Trust and cybersickness in vr-marketing – investigating ipd and cybersickness, and their effects on trust, customer value, NPS, cross– and up-selling. International Conference on e-Society. 2022. Vol. 20. Р. 99–106. https://doi.org/10.33965/es_ml2022_202202l013

Mazed and Confused: A Dataset of Cybersickness, Working Memory, Mental Load, Physical Load, and Attention During a Real Walking Task in VR / Setu J., Le J., Kundu R., Giesbrecht B., Höllerer T., Hoque K., Desai K., Quarles J. IEEE International Symposium on Mixed and Augmented Reality (ISMAR). 2024. Р. 1048–1057. https://doi.org/10.1109/ismar62088.2024.00121

Thorp S., Rimol L., Grassini S. Association of the Big Five Personality Traits with Training Effectiveness, Sense of Presence, and Cybersickness in Virtual Reality. Multimodal Technol. Interact. 2023. Vol. 7. Р. 1–11. https://doi.org/10.3390/mti7020011

Feasibility of virtual reality and machine learning to assess personality traits in an organizational environment / Vargas E., Carrasco-Ribelles, L., Marín-Morales, J., Molina C., Raya M. Frontiers in Psychology. 2024. Vol. 15. Р. 1–16. https://doi.org/10.3389/fpsyg.2024.1342018

Signaling feedback mechanisms to promoting self-regulated learning and motivation in virtual reality transferred to real-world hands-on tasks / Wang W., Pedaste M., Lin C., Lee, H., Huang Y., Wu T. Interactive Learning Environments. 2024. Vol. 32. Р. 7661–7676. https://doi.org/10.1080/10494820.2024.2331151

Cognitive Load Inference Using Physiological Markers in Virtual Reality / Wei J., Siegel E., Sundaramoorthy P., Gomes A., Zhang S., Vankipuram M., Smathers K., Ghosh S., Horii H., Bailenson J., Ballagas R. IEEE Conference Virtual Reality and 3D User Interfaces (VR). 2025. Р. 759–769. https://doi.org/10.1109/vr59515.2025.00098

Published

2025-12-29

Issue

Section

Статті